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SUMMARY 
The control volume, finite difference method and the k-E turbulence model are employed in a numerical 
simulation of the turbulent fluid flow both outside and inside a blunt cylindrical sampler which houses a paper 
filter in its chamber. The presence of a paper filter, which has a very large resistance, results in a large pressure 
drop across the filter and this causes difficulties in making the SIMPLE or the SIMPLEC scheme converge. In 
order to improve the rate of convergence of the SIMPLE-like algorithm when the resistance of the filter is very 
large, an average pressure correction formula is proposed. Based on global mass conservation, a line average 
pressure correction for the paper filter is derived using a modified Darcy law for a porous medium. A combination 
of this formula and the SIMPLE-like algorithm can rapidly build up the pressure drop across the filter and hence 
dramatically improve the rate of convergence of the iterative scheme. Comparisons of the convergence histories 
and the numerical results for the fluid flow when using SIMPLE and SIMPLEC with the average pressure 
correction method show that the average pressure correction method for dealing with the paper filter significantly 
accelerates the rate of convergence of the iterative scheme. 

KEY WORDS SIMPLE-like algorithm Average pressure correction Paper filter M u l e n t  flow Sampler 

1. INTRODUCTION 

Dust samplers are widely used in the workplace and ambient atmospheres so that portions of dust- 
laden air may be aspirated and collected on a paper filter which is housed in the chamber of the 
sampler. This sample is then assessed and the concentration of airborne dust determined. The chamber 
of the sampler is designed so as to control the shape and strength of the recirculating fluid flow in the 
chamber. This is necessary because we wish to avoid the particles impacting on the wall of the chamber 
of the sampler and to control the particle distribution on the filter so that an efficient operation of the 
filter and an accurate particle measurement may be made. Therefore the simulation of the fluid flow in 
the chamber of a sampler is very important in the design of samplers. 

The paper filters used in the chamber of samplers are usually of very small thickness, typically of the 
order of lob4 m, with a penetration coefficient of about lo9. Therefore the pressure drop that the fluid 
undergoes on passing through the filter is very large and is greater than elsewhere in the fluid field by 
several orders of magnitude. As discussed by Wen and Ingham,' a w i d  variation in the pressure 
usually results in a very slow rate of convergence of the SIMPLE-like algorithms as developed by 
Patankd and Van Doormaal and Rai thb~.~ This is because the global mass conservation is obtained by 
the local mass conservation through the elliptical pressure correction equation and this equation is not 
very sensitive to rapid changes in the fluid velocity which are caused by rapid changes in the geometry 
of the problem. Based on the global mass conservation principle, Wen and Ingham' integrated the 
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momentum equation for an approximate onedimensional flow and derived a line average pressure 
correction which is a result of the average velocity correction. The formula obtained by Wen and 
Ingham' can significantly accelerate the rate of convergence of the iterative procedure when rapid 
pressure changes are caused by rapid changes in the geometry of the solution domain. Hence a similar 
procedure has been developed for dealing with the large pressure drops which are produced by the 
resistance of a paper filter. We employ the k--E turbulence model and the control volume, finite 
difference method in order to simulate the turbulent flow both inside and outside the sampler in whch 
a paper filter is housed. A numerical model of the paper filter is developed by use of a staggered grid 
and an average pressure correction is derived based on the global mass conservation and a modified 
Darcy law for the fluid flow through a porous medium. It is found that when the resistance of the filter 
is very large, the average pressure correction procedure developed in this paper can significantly 
accelerate the rate of convergence of the iterative scheme. 

2. GOVERNING EQUATIONS 

In general, the dust-laden fluid flows are two phase flows and turbulent convection, turbulent diffusion 
and the inertial force caused by the dust particles affect the motion of the fluid. The dust particles 
do not follow the motion of the air owing to their inertia, and the distortion of the fluid flow produces 
a non-uniform distribution of dust particles, i.e. the concentration of the particles is not constant in 
the fluid flow. The interaction between the fluid and dust particles and the variation in the concentration 
of the dust particles become more important as the size of the dust particles increases. However, in 
this paper we have neglected this interaction between the fluid and dust particles and assumed that the 
existence of the particles does not change the turbulent structure of the fluid flow and that the density 
of the (two-phase) fluid flow is constant. In practical aerosol sampling this will be a good 
approximation because the particles are normally less than 50 pm in dlameter and in very low 
concentrations. Because the collection of particles on the filter will change the resistance of the filter, 
the fluid flow will be time-dependent. However, as a first approximation in our understanding of 
the basic fluid and particle mechanics of this system we have ignored this time-dependent change in 
the resistance of the filter. Further, it is possible that some of the particles which are initially deposited 
on the filter may be re-entrained into the fluid flow. In order to fully investigate this phenomenon, the 
nature of the filter and particles needs to be specified, and to reduce the complexity of the problem, it is 
assumed that once a particle has hit the filter it sticks to it. The use of all of these approximations 
allows us to employ a standard turbulent flow model for the simulation of the fluid flow. 

In order to illustrate the numerical technique used for dealing with the fluid flow through a thin filter 
with a large penetration efficiency, we consider the fluid flow past an axisymmetric disc of radius R and 
thickness d which faces the wind, and the air is sampled through a circular central orifice of radius ro. 
Behind the disc is a cylindrical sampling chamber of radius rl and length I and an exit pipe of radius 
r2. The axes of the disc, the cylindrical chamber and the outlet pipe are all aligned. The dust-laden air 
enters the chamber through the orifice of the sampler, passes through a paper filter on which the 
particles are collected and is then pumped out through the exit pipe. Cylindrical co-ordinates (see 
Figure 1) are used in which r is the co-ordinate in the radial direction and z is aligned with the axis of 
symmetry of the sampler and is measured positively in the opposite direction to the direction of the 
freestream. 

The turbulent air flow through filters is governed by the modified Darcy law' which can be 
expressed as 

1 1 

P P 
-VP = - - (aV + /qVlV), 
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Figure 1. Mathematical model of blunt sampler 

where V P  is the pressure gradient across the filter, V is the fluid velocity vector through the filter and a 
and p are permeability coefficients which depend on the physical properties of the porous medium and 
the fluid. Therefore the momentum equation for the turbulent fluid flow in the presence of a filter is 
given by 

(2) 
1 

P 
V.VV = -Vp + V.(v,VV) - - (aV + j?lVlV), 

where p = Pip  and a and fl are identically zero in all of the computational domain except on the filter. 
For an incompressible turbulent fluid we also have the continuity equation 

v.v = 0 ,  (3) 

where V = ue, + we, is the turbulent averaged velocity vector, u and w are the turbulent averaged 
velocity components in the radial and axial directions respectively, p is the density of the fluid and u, is 
the effective kinematic viscosity of the fluid, consisting of the sum of the laminar kinematic viscosity o 
and the turbulent kinematic viscosity u,, i.e. u + u,. It should be noted that we have assumed that the 
fluid is incompressible because the fluid velocities are not very large. However, because of the rapid 
changes in pressure that occur in these problems, the density will vary, but under practical aerosol 
sampling conditions this variation in the density of the fluid is not significant. 

A standard k-E turbulence model, as developed by Lauder and Spalding: is employed and the 
governing equations are as follows. The turbulent kinetic energy equation is 

(V.V)k = V -  [ ( v + 2) Vk]  + 4 - E ,  

the turbulent energy dissipation equation is 

E E2 
(V.V)E = 0. [ ( v  +:)v&] + c1 i 4  - c2- k 

(4) 

( 5 )  

and the turbulent viscosity is given by 

kZ 
vt = cp- ,  

E 
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where k is the turbulent kinetic energy, E is the turbulent dissipation and 4 is the generation of turbulent 
energy which is caused by turbulent stresses. The coefficients which occur in equations (4x6) are 
those used in the standard k-&  equation^:^ 

cp = 0.09, bk = 1.0, = 1.3,1 = 1 . 4 ,  cz = 1.92. (7) 

These values are based on extensive examination of h e  flows but can also be used for wall flows, 
although the constants need to be changed in order to accommodate for effects such as curvatm and 
low Reynolds number. In fact, we found that the numerically predicted values of k and E are in good 
agreement with the experimental values obtained by Vincent et al.’ 

3. BOUNDARY CONDITIONS 

Equations (2x5)  now have to be solved subject to the appropriate boundary conditions. Since 
the sampler is axisymmetric, we need only consider the solution in the semi-infinite domain r > 0, 
-m < z < 00 (see Figure 2). However, in the numerical calculations we have to approximate the 
location of the boundary conditions as r + 00, -m < z < 00 to be at a finite radius, i.e. on AB, 
and as z + f m  at finite distances, i.e. on AA’ and BB’. Equations ( 2 x 5 )  now have to be solved 
subject to the following boundary conditions. 

On the upstream boundary A‘ the fluid velocity takes the constant value UO in the negative z- 
direction. For the fTeestream turbulence we use the experimental data obtained by Vincent et aZ.,’ who 
used an adjustable system of square-mesh, biplanar-lattice-type grids. They give empirical expressions 
for the freestream turbulent intensity I and the turbulent length scale L as 

z = 1.59(3-O.’, 

b 
where b and x are the width of the bars in the grid system and the distance downstream h m  the grid 
system respectively. 

On thefieatream boundary AB 

A B 

+ 
u +  

+ 

n 
f i l  terY I 
symmetrical axis 

F i g m  2. Computational domain 
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On the downstream boundary BB' 

th &v 8k 8.s _ -  az -.& =--& = &'O. 

On the axis of symmetry 
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At the entmnce of the exitpipe of the sampler it is assumed that there is a uniform velocity U, which 
corresponds to a sampling flow rate Q and 8k/& = &/8z = 0. 

Near rhe walls ofthe sampler the wall function method4 is used to bridge the fully turbulent region 
and the flow in the vicinity of the wall. When the grid node P which is nearest to the wall of the 
sampler is located at a distance y from the wall, the value of the quantity y" at the point P is defined as 

For the momentum equations the wall shear stress T, is calculated using the linear or the logarithmic 
law of the wall, i.e. 

7, = (v:) fory+ 5 11, 
P 

ph-C:I4k'/' U 
for y+ >_ 11, 

P 
Tw = ( ln(Ey+) ) 

where the Karman constant K = 0.4, for a smooth wall E = 9-0 and U is the component of the fluid 
velocity parallel to the wall. 

In the k-equation (4) the source term Sk = 4 - E at the point P nearest to the wall is modified by use 
of the wall hct ion.  The generation term 4 is calculated by use of the wall shear stress expression (14) 
or (1 5), whilst the dissipation term E is calculated from 

C:14 k3121n( Ey+ ) 
for y+ >_ 11. + = (  KY ) P 

In the &equation ( 5 )  the value of E at the point P is calculated from 

4. MATHEMATICAL MODEL OF THE FILTER AND THE NUMERICAL, METHOD 

The control volume, finite difference method is used to discretize the governing equations (2x5) on a 
non-uniform staggered grid. Because the thickness of the filter is much smaller than that of the control 
volume, the axial component of velocity, w, is located on the filter but the radial component of velocityy 
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Figure 3. Staggered grid arrangement on filter for velocity components u and w and pressure p ,  

u, is not located on the filter, being a distance of half a control volume from the filter (see Figure 3). 
Therefore the modified Darcy law (1) is applied only on the w-component of velocity. For the u- 
component of velocity, which is in the direction parallel to the surface of the filter, we treat the filter as 
a porous wall, namely the shear stress on the surface of the filter is determined by the turbulent wall 
function method. 

We now consider an arbitrary volume of fluid which is contained in a volume R with an outer 
surface S and the unit outward normal to the surface is n. We apply the Gauss theorem to equations (2) 
and (3), which yields their integral forms, i.e. 

j j v  . ods = 0, (19) 
S 

(20) 
1 

P 
J J (v .  n ) V a  = - J J npds + J J n.(vtVV>a - - ( a  + B~V~)VR.  

S S S 

The finite difference equations for the velocity components are obtained by using equation (20) for 
every control volume in the computational domain and introducing an under relaxation parameter E 
into the momentum equations. In the axial direction this may be expressed in the form 

where 

Here Wnb are L,e values of the w- and utomponents of velocity at the nearest-neigLouring points, anb 

are the standard maaatrix coefficients, obtained by using the upwind difference scheme, and the 
coefficients A are the areas of the faces of the control volume. 

In the SIMPLEC algorithm the pressure correction can then be obtained by substituting all the 
velocity components into the continuity equation for the control volume. This yields 

aPP; = aEP; + awP& + UNPE, + asp$ + b, (25)  
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(27) 
The mass residual of every control volume is given by 

where C,, C, C, and C, are the masses of fluid convected through each of the faces of the control 
volume which sumunds the point where the pressure is located. Then the source term in equation (25) 
is given by 

b =  -&. (29) 
A measure of the rate of convergence of the iterative procedure is the sum of the mass residuals over 

all the control volumes, namely 

5.  THE AVERAGE PRESSURE CORRECTION ON THE FILTER 
In expressions (23), (24), (26) and (27) we observe that the permeability coefficients a and fl are only 
involved in the axial component of the momentum equations and not in the radial component. For most 
practical filters the experimental data are usually only sufficient to determine the value of a and 
therefore in most of this paper we set /? = 0. When one of the permeability coefficients, namely g of the 
filter is very large, the pressure drop across the filter is very large. In the example of the 25 mm 
Millipore membrane filter of type RA, which has a 1-2 pm nominal pore size and a hckness of filter 
of L = 1.5 x m, then a = 2.43 x lo8 (and fl = 0) and the pressure drop across the filter is 
36,450 N m-2 when the velocity is 1.0 m s-'. In such circumstances the pressure drop across the 
filter is much larger than the pressure variations elsewhere in the solution domain by several orders of 
magnitude. Although across the filter the pressure change is very large, the coefficients a and /.I are 
only involved in the w-component of the momentum equation and in the coefficient UE of the pressure 
correction equation when the filter is on the east surface of the control volume for the pressure, or in 
the coefficient a, when the filter is on the west surface of the control volume for the pressure. 
Therefore the pressure equation (25) can inherently produce a sharp change in the pressure on the 
filter; for example, convergent solutions can be obtained for values of a up to about lo7 when /.I = 0. 
However, on further increasing the value of a, difficulties arise in obtaining convergent results. In fact, 
no matter what relaxation factors were used, we could not obtain convergent results when a was larger 
than about 2.0 x lo7. The reason for this is that only the axial momentum equation includes the 
resistance of the filter, aV Therefore in the pressure correction equation only the coefficient which is 
related to the axial component of velocity gives rise to a large pressure correction, but this coefficient is 
O(a-'). However, the coefficient which is related to the radial component of velocity is q 1 ) .  
Therefore, when a is very large, the coefficient which relates to the pressure correction in the axial 
direction is very small in comparison with the coefficient which is related to the pressure correction in 
the radial direction. Then the terms in equation (25) which include the pressure correction in the axial 
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direction are extremely small and this leads to difficulties in building up the pressure drop across the 
filter. In order to obtain convergent results for large values of a (and 8) and in order to accelerate the 
rate of convergence for any value of a and b, a new acceleration technique has been developed. In this 
paper we employ a similar principle to that proposed by Wen and Ingham’ in order to obtain the 
average pressure correction on the filter. 
On the filter the momentum change in the z-direction and the shear stress caused by the fluid 

viscosity are both small compared with the resistance of the filter. Thus the Navier-Stokes equation (2) 
can be simplified to equation (1) and the pressure drop is dominated by the changes that occur in the z- 
direction. Therefore equation (1) can be approximated by 

dP - = -aW - fllWlW, 
dz 

where W is the average velocity in the zdirection on the filter and P is the average pressure on the 
filter. If we let w* be the updated average velocity in the z-direction and W be the average velocity 
correction, then 

w = W’ + w’. (32) 
By using the global mass conservation principle, we obtain 

w‘ = (p - J, p w * ) w  J, P a l  (33) 

where A is the area of the surface of the filter. 
If we let P be the average pressure correction, then the correct average pressure is given by 

P = P + P ,  (34) 
where 
expressions (32) and (34) into equation (31) yields 

is the updated value of the average pressure. Inserting the values of Wand P fiom 

-+-==aw*-aw’ - / j Iw*+ d P d P  w’l(W*+ W’). 
d z d z  (35) 

The updated d u e s  of velocity, FP and pressure, P*, satisfy equation (31) and W’ in the term 1 W* + W’l 
is ignored in order to linearize the equation. Then combining equations (31) and (35) leads to 

When the pressure nodes are located on the two sides of the filter (see Figure 3), expression (35) can be 
modified to the form 

W = -(aW’+/jIW*IW’)Az, (37) 
where A P  is the difference between the pressure corrections on the two sides of the filter and Az is the 
mesh size in the axial direction used in the control volume method. Further, we let the average pressure 
correction in front of the filter take the value of zero and then we obtain the average pressure correction 
behind the filter as 

P = -(awl + f l l~* lW’)Az .  (38) 
This value for the average pressure correction should then be added to the pressure in the domain 
downstream of the filter and the pressure in this region then undergoes relaxation, namely 

P = P’ + a,P. (39) 
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The relaxation factor a,, should take a small value in order to avoid an overcomction when a or b is 
very large; for example, when the value of a h  = lo4 and f l =  0, we set ap = 0-01. 

The resulting finite difference forms of the momentum equation, the pressure correction equation 
and the k- and Equations are solved using a line-by-line tridiagonal matrix algorithm with one sweep 
of the momentum equation and four sweeps of the pressure correction equation. The relaxation factor 
was taken to have a value of E = 3 and this produces a stable and convergent result with the fast rate of 
convergence for all the calculations presented in this paper. 

6. RESULTS AND DISCUSSION 

For a Millipore membrane filter as used in the experimental investigations of Chung and Ogden6 the 
pressure drop across the filter was determined by the modified Hagen-Poiseuille law7 which has the 
same form as equation (l), but the permeability coefficient is determined by 

/? = 0.0, 

where p is the dynamic viscosity of air. 
Although the filter used in the experimental investigation is a 25 mm Millipore membrane filter 

(type RA, 1-2 pm nominal pore sue, a = 2.4 x lo8, /I = 0), we will adopt various values of a in order 
to investigate the effect of the resistance of the filter on the fluid flow and the convergence behaviour of 
the numerical methods. Numerical results have been obtained for a wide variety of samplers, but all the 
results presented in this paper correspond to the experimental data of Vincent et al.' and C h u g  and 
Ogden6whereR=20 mm,r0=2 mm, rl = 11-31 mm, I =  13.2 mm, U0=2 m s-', Q=9-6  1 min-' 
and the average axial velocity at the orifice of the sampler is 12-6 m s-'. 

6.1 The enhancement in the mte of convergence for paper filters with a large resistance 

The use of the SIMPLEC algorithm and the average line pressure correction formula (37) can 
produce convergent results very rapidly when the penetration coefficient a is less than about lo7. 
However, on further increasing the value of a, a very noticeable reduction in the rate of convergence is 
obtained. Figure 4 shows the rate of convergence of the mass residual as a function of the number of 

0 500 I000 I s 0 0  2000 
The nUmber#l-. 

Figure 4. Mass residue 4 a function of number of iterations: - - -, a = 3 . 0  x lo', SIMPLEC; - x -, a=3 .0  x lo', 
SIMPLEC with maage jmsm c o d o n ;  - o -, a = 1.0 x lo', SIMPLEC; --, a = 1.0 x Id, S W L E C  with avcrp~e 

pnssure conection 
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Figure 5 .  Average velocity on the filter as a function of number of iterations: - - -, a = 3.0 x lo', SIMPLEC; - x -, 
a = 3.0 x lo', SIMPLEC with average pressure correction; - o -, a = 1.0 x lo8, SIMPLEC; ---, a = 1.0 x lo8, 

SIMPLEC with average pressure correction 

iterations for values of a = 3..0 x lo7 and 1.0 x 10' when using the modified SIMPLEC algorithm as 
described by Wen and Ingham' for speeding up the rate of convergence for fluid flows through a small 
orifice. It is observed that the mass residual rapidly reduces to a value of about 0.15 during the first 300 
iterations for both a = 3.0 x lo7 and 1-0 x 10'. However, after this number of iterations the rate of 
convergence begins to slow down rapidly. After 2000 iterations the mass residuals are 0.0443 for a = 
3.0 x lo7 and 0.0725 for a = 1.0 x 10'. We also observe that the larger the value of a, the slower is 
the rate of convergence of the iterative scheme. Further, we cannot expect that the mass residuals will 
satisfy the convergence criterion within a reasonable number of iterations. When using the average 
pressure correction formula (37) to correct the pressure drop across the filter, we observe that the mass 
residuals for a = 3.0 x lo7 and 1-0 x 10' continue to decrease rapidly as the number of iterations 
increases and the convergence histories are almost independent of the value of a. Figure 4 shows that 
after about 2000 iterations the mass residuals have reached a value of about 1 .Ox Thus we 
conclude that the rate of convergence has been significantly improved by adopting the average pressure 
correction formula (37), because the method quickly produces the rapid pressure drop across the paper 
filter. 

Figure 5 shows the average velocity on the filter as a function of the number of iterations for the 
same variables and operating conditions as those considered in Figure 4. It is observed that without the 
use of the average pressure correction formula (37) a very slow rate of convergence is achieved for 
both the average velocity on the filter and the global mass conservation. Without the use of formula 
(37), in the case when a = 3.0 x lo7, after about 2000 iterations the average velocity reaches a value of 
about 0.21 m s-l, while in the case when a = 1.0 x 10' the average velocity only reaches a value of 
0.082 m s-'. It is clear that in order to achieve its correct value of 0.3924 m s-', an excessively large 
number of iterations will be required. However, when using the average pressure correction, only 15 
iterations are required for the average velocity on the filter to achieve its correct value within an 
accurcy of lop4. The average pressure correction formula (37) rapidly builds up the pressure drop on 
the filter and the global mass conservation is satisfied extremely rapidly. 

The streamlines in the vicinity of the sampler for a =  3.0 x lo7 are presented in Figure 6 after 2000 
iterations using the modified SIMPLEC technique as described by Wen and Ingham' (Figure 6(a)) and 
with the use of the average pressure correction formula (37) (Figure 6(b)). It is found that the formula 
for the average pressure correction as proposed by Wen and Ingham' rapidly produces the pressure 
drop at the orifice of the sampler as well as the flux entering the chamber of the sampler, but the 
velocity field in the vicinity of the filter is very inaccurate. However, when using the average pressure 
correction formula (37) on the filter, accurate flows may be obtained after about 2000 iterations. 
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Figure 6. (a) Streamline pattern for rllR = 0.567, UR = 0.64. dR = 0.02 and a = 3.0 x lo7 when using SIMPLEC algorithm after 
2000 iterations. (b) Streamline pattern for rl/R = 0-567, UR = 0.64, d R  = 0-02 and 01 = 3.0 x lo7 when using modified 

SIMPLEC algorithm' and avaage pressure correction formula (37) after 2000 iterations 
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Figurc 7 .  Effect of the filter resistance on ftuid flow in sampler for r,/R = 0.567. UR = 0.64, dR= 0.02 (a) a = 0, (b) a = lo5, 
(c) a = lo6 and (d) a = lo* 
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Figure 8. Effect of filter resistance on the axial component of fluid velocity on the filter 

The situation where /I is in the range 0 5 /I 5 lo8 has also been investigated for 0 5 a 5 lo8. It has 
been found that when using the average pressure correction formula (37), the rates of convergence for 
both the mass residual and the average velocity across the filter are very similar to those in Figures 4 
and 5 where /I = 0 and the formula (37) has been used. Thus we conclude that the average pressure 
correction leads to a rate of convergence which is independent of the choice of values of the 
coefficients a and /I. 

6.2. The effects of thefilter on the fluidflow 

When the filter is located at the midplane of the chamber, i.e. 6.8 mm away from the orifice of the 
sampler, the effect of varying the value of the permeability coefficient of the filter on the streamline 
pattern is as shown in Figure 7. The solid straight vertical lines within the cylindrical sampler indicate 
the location of the filter, and the case of a = /I = 0, i.e. no filter, is also presented. We observe that 
when a = lo5 and B = 0 the filter produces a very strong resistance to the passage of fluid through it. 
Two different streamline patterns appear on the two sides of the filter. After passing through the orifice 
of the sampler, the fluid retains its characteristics owing to its large inertia, but when it reaches the 
vicinity of the filter, a large quantity of fluid deviates sharply in direction and flows along the plane of 
the filter before passing through it. As a result of this phenomenon, a strong recirculating flow 
develops between the front face of the cylindrical sampler and the filter. After the fluid passes through 
the filter, it is simply sucked into the exit pipe. As the value of a increases, the fluid flow pattern does 

I .o 

0.5 0.0 -0.5 
zIR 

Figure 9. Streamline pattern when the filter is situated very close to the orifice of the sampler for rllR = 0.567, UR = 0.64, 
and dR = 0.02. 
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not change significantly, but the fluid in front of the filter turns away from the symmetrical axis of the 
sampler more abruptly. However, after a reaches a value of o(108), any further increase in its value 
only leads to an increase in the pressure drop across the filter and the general fluid flow pattern remains 
relatively unchanged. 

Figure 8 shows the profiles of the non-dimensional axial component of velocity on the filter for 
various values of a. When there is no filter, the velocity is very large near the axis of symmetry of the 
sampler, whilst near the wall of the chamber of the sampler the velocity is very small. As the value of 
the resistance of the filter increases, the magnitude of the axial component of velocity near the axis of 
symmetry of the sampler decreases, whilst near the wall of the chamber of the sampler the axial 
velocity increases. Finally, when the value of a is greater than about lo8, the axial component of 
velocity at the filter becomes almost uniform and no substantial changes occur as the value of a 
increases fiuther 

When the filter is placed very close to the orifice of the sampler, the resistance of the filter affects the 
fluid flow pattern near this orifice. Figure 9 shows the streamlines when a 25 mm Millipore membrane 
filter with a = 1 -0 x lo8 and f l =  0 is located at a distance of 2 mm, i.e. one radius of the orifice, from 
the fiont face of the sampler. Because the filter is very close to the orifice and the value of a is large, a 
large fraction of the fluid flow will immediately on entry into the chamber of the sampler turn to flow 
in the radial direction and no recirculating flow is present in fiont of the filter. Further, the axial 
component of velocity through the filter is again almost uniform owing to the large resistance of the 
filter. 
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Figure 11. Variation in the presaurr on the axis of the samgler bawcen the orifice of sampler and the en- of the exit 
pipefma=IO andIO*and/3=0 
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Figure 12. Variation in the pressure on the axis of the sampler between the orifice of the sampler and the enhance of the exit 
pipe for B = lo6, lo7 and lo8 and K = lo7 

Figure 10 shows the pressure distribution on the axis of the sampler between the orifice of the sampler 
and the filter for a = lo4, lo5 and lo6 and j = 0. These results show that as the fluid passes through the 
orifice of the sampler, a large pressure drop in the vicinity of this orifice is always accompanied by an 
acceleration of the fluid, despite the presence of the filter. However, in fiont of the filter the pressure 
undergoes a recovery owing to the resistance of the filter. The pressure increases as the resistance of 
the filter increases. However, when a is larger than about lo6, fiuther increase in the resistance of the 
filter does not cause any increase in the pressure in front of the filter and for a given sampling velocity 
the upstream pressure distribution of the filter remains almost unchanged. 

Figure 11 illustrates the pressure distribution on the axis of the sampler between the orifice and the 
entrance of the exit pipe of the sampler for a = lo6, lo7 and 10' and j = 0. It is observed that the 
resistance of the filter significantly affects the pressure drop across the filter when a > lo4 and that the 
pressure drop in the vicinity of the orifice of the sampler is much smaller than that across the filter 
when the resistance of the filter is sufficiently large. Also, although the velocity distribution is only 
slightly affected by taking the value of a greater than about 2.0 x lo7, the pressure drop across the 
filter still increases as the value of a increases. The effect of the value of j on the pressure drop across 
the filter has also been investigated and Figure 12 shows the cases with j = lo6, lo7 and 10' and a = 
lo7. It is observed that the effects of the coefficient j on the velocity distribution and the pressure drop 
are very similar to those of the coefficient a. 

7. CONCLUSIONS 

The standard k--E turbulence model has been used for the simulation of turbulent flows both inside and 
outside a sampler and the staggered grid technique is appropriate for the modelling of the paper filter. 
In practice paper filters usually have a very large resistance and hence the pressure drop across the 
filter is very large. When using the SIMPLEC method, it has been found to be very difficult to obtain 
convergent results. Hence an average pressure correction method has been developed and this has 
successhlly led to a substantial enhancement in the rate of convergence of the iterative scheme. It has 
been clearly demonstrated that the average pressure correction technique developed in this paper, 
which is based on the global mass conservation developed by Wen and Ingham,' can rapidly build up 
the average pressure distribution in one direction. This assists the SIMPLE-like algorithms to reveal the 
local variations in velocity and pressure and to accelerate the rate of convergence of the iterative 
scheme. The numerical results indicate that the paper filter, which is housed in the sampler, can 
significantly affect the fluid flow pattern in the chamber of the sampler. Therefore the control of the 
fluid flow in the chamber can be achieved by appropriately designing the geometry of the chamber. We 
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have also found that the paper filter as used by Chung and Ogden: produces an almost uniform axial 
velocity distribution on the filter and this leads to the important conclusion that the velocity profile on 
this filter is virtually independent of the operating conditions of the sampler if the value of the 
permeability is larger than about 10’. This is useful for stable operation of the filter, but if a large 
pressure drop occurs across the filter, then a more powerful pump is required. 

ACKNOWLEDGEMENT 

The financial support of the Health and Safety Executive is gratefully acknowledged. 

APPENDIX: NOMENCLATURE 

thickness of disc of sampler 
turbulent intensity 
turbulent kinetic energy 
turbulent length scale 
pressure correction 
pressure of fluid flow 
average pressure 
average pressure correction 
flux of fluid across filter 
cylindrical coordinates 
radius of chamber of sampler 
radius of exit pipe of sampler 
radius of disc of sampler 
mass residual 
velocity at enhance of exit pipe of sampler 
velocity of freestream 
velocity vector of fluid flow 
average axial velocity across filter 
friction length 
permeability coefficients of paper filter 
relaxation factor 
turbulent energy dissipation 
effective viscosity of turbulent fluid flow 
turbulent viscosity of fluid 
viscosity of fluid 
density of fluid 
shear s h s s  on wall 
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